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Time-periodic systems close to two-dimensional non-linear Hamiltonian systems are studied in the case 

when the perturbation contains non-linear parametric terms and is non-conservative. A condition for 

the existence of new regimes in the resonance zones, namely, regular two-frequency and irregular 

“quasi-attractors” is established. The problem of the transition from the resonance case to the non- 

resonance one as the difference in tuning frequency is altered is solved by analysing self-excited 

oscillatory truncated systems determining the topology of the resonance zones. Using a specific 

example, it is shown that the numerical and analytic results are in good agreement in the quasi- 

conservative case. 

1. FORMULATION OF THE PROBLEM 

We consider systems of the form 

dr/dt=aH(x,y)lay+Eg(x,y,vt), dyldt=-JH(x,y)/&+~f(x,~,vt) (1.1) 

where E and v are parameters (l&l is small), and g andf are periodic functions with respect to 
cp = vt with period 21~. 

We shall assume that the unperturbed Hamiltonian system 

a!x/dt=aH(x,y)/ay, dyldt=-aH(x,y)lak (1.2) 

is non-linear and has at least one cell D filled with closed phase curves. The Hamiltonian Has 
well as g andf will be assumed to be sufficiently smooth (analytic) in x, y in a domain G c R2 
or G c R’ @OS’. We shall also assume that g and fare continuous with respect to t. 

We assume that the following condition is satisfied. 

Condition A. aglax+i3f /ay+O. 
The condition implies that (1.1) is a non-conservative system. 
Along with (l.l), we shall consider the autonomous system 

dx/dt=aH(x,y)iay+&~(x,y), dy/dt=-aH(x,y)ldx+$(X,y) 

where g = (g), and f = (f),. 
We assume that the following condition is satisfied. 

Condition B. System (1.3) has a finite set of rough limit cycles in cell D. 

(1.3) 
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The purpose of this paper is to solve the important problem of new regimes arising in the 
resonance zones. Both regular and irregular regimes (“quasi-attractors”) are possible. (In the 
problem under consideration the term “quasi-attractor” [1] means that there is a homoclinic 
Poincare structure with an attracting neighbourhood.) 

The properties of the quasi-attractor itself will not be analysed numerically here, as there arc 
now many papers devoted to this subject (for example, [2]). 

Moreover, in this paper we use system (3.1) 

dxIdt=y. dyldt= --x - x3 -t- (6 + P2x2 + ~~xsin~vt))y + P4 sin(vr) ( 1.3) 

where _F: are parameters, as a specific example to illustrate the theoretical results obtained for 
small I&l and establish that the theory is in good agreement with experiments for /&I other than 
small ones. It is required only that the non-conservative terms should be small, i.e. that the 
parameters 4, Pz, P3 in (1.4) should be small. New regimes exist in the resonance zones due to 
the presence of non-linear parametric terms in f and g (in (1.4) it is the term P,xysin(vt) j. 
The existence of such regimes in systems of the form (1.1) was first pointed out in [3, 41. The 
present paper, in which the theory of essentially non-linear self-oscillatory systems is devel- 
oped, is closely related to [4, 51. 

When studying systems (l,l) and (1.3) it proves convenient to change from the variables X. :’ 
to the action (I) and angle (0). In terms of the new variables (1.1) takes the form 

dlIdt=eF(I,CAcp), d0idt=o(Z)sER(Z,e,cp), dq/dt=v 

IF=& -&, R=-gX, +fl,) 

(l.5) 

where o(Z) is the characteristic oscillation frequency, which can be determined from (1.2). 
System (1.5) is defined on the direct product 6@S’ 8.S’ = F@T’. where 6 is the image of lhe 

interval ]hmin, h max] ( [ZE c ]A min, k max], where ZZ(n. ,v) = ZI is the “energy” integral for 
(1.2)). Since o and v arc commensurable 

In other words, because of the resonances, the completely averaged system 

dI I dt = &B(I), B(I) = (F),,, i 1.7) 

does not, in general, determine the behaviour of the solutions of (1.5) in the global domain 
corresponding to the variation of Z in the interval 6. 

The equation 

is called the Poincarc-Pontryagin generating equation. Its simple real roots determine the 
structurally stable limit cycles in system (1.3). Condition B is equivalent to the following 
condition: the set of simple roots of Eq. (1.8) on F is bounded. Therefore, if B(Z,J= 0. then 
dB(Z~)dZ#O. This makes it possible ]5] to establish the qualitative behaviour of solutions in 
the global domain 6@TZ. It suffices to establish the behaviour of solutions in the neighbour- 
hoods of the bounded set of resonance levels I= Z,,(H(x, y)= hpy). where I,, can be 
determined from (1.6) and I,, cF. 
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2. THE STRUCTURE OF RESONANCE ZONES IN PARAMETRIC SYSTEMS 

The behaviour of solutions in the neighbourhoods 

u=((z,e):Z,-c~<z<Z~+c~, 0~8~2rc, C=const), JL=& 

of the induced resonance levels Z = ZJH(X, y) =hp,) can be determined apart from terms 
O(u’) [3,4] from the pendulum-type equation 

dF(Z,,v+qcp/p,cp) + aRU,.v+qcph-‘.cp) 
az av P 

cp 

The smallest period of A (v, Z,,) and o(v, I,,) is seen to be 2%/p [3, 61. The following relation- 
ship holds (stated without proof in [4]) 

where X = X(Zpp,, v+CZcpZP), y= Y(Zp,, v+qcplP) is the unperturbed 
z=z,,. 

Indeed, the expressions for F and R in (1.5) imply that 

solution at the level 

Since (x, y) 3 (I, (3) is a canonical transformation, (x,y, - x,y,) = 1. Hence we obtain (2.2). 
Relationship (2.2) implies the following result. 

Theorem 1. If the divergence of the vector field in (2.1) depends on V, then the divergence of 
the vector field in the original system (1.1) contains terms depending on the time t and on one 
or both coordinates. 

In many cases the converse assertion is true (for example, for (1.4)). 
The terms mentioned in Theorem 1 are called non-linear parametric terms. 
We will now investigate Eq. (2.1). First, we note that 

A(v;z,)=A,(v;Z,)+~(z,), B=(A),. (2.3) 

~(v~~*)=(J*(v;Zw)+~(Zw), 4 =(a), 

where B(Z) is the generating function of the autonomous system (1.3) and Bl is the derivative 
of B(Z) The case when o(v: I,,) has constant sign has been studied fairly fully (for example, 
[3-71). We shall therefore consider the case when o has alternating sign. In other words, we 
shall study the new structure of resonance zones due to the non-linear parametric terms in the 
perturbations. It follows from (2.3) that in this case 

14 (1, )I < y+. W. zm >I (2.4) 

When studying the pendulum equation (2.1) we shall distinguish between the cases when (a) 
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B(Zp,) $0 and (b) B(Zp,)= 0. In case (b) system (3) has a structurally stable limit cycle in a 
neighbourhood of the level H(x, y) = /l,,. There is no such cycle in case (a). 

Case (a). Neglecting terms of order I_I in (2.1), we arrive at the integrable equation 

d2v/dr2-bA(v,Z&=O (2.5) 

If 

then (2.5) has no equilibrium states. The resonance level Z= I,, is then referred to as 
“passable” [3, 41. Note that this term has been derived from the topology of the resonance 
zone, as opposed to the corresponding term used in physics, where it means a change in the 
perturbation frequency v. In the case under consideration there are no periodic solutions in 
the vicinity of the resonance level. 

The most interesting case is when Eq. (2.5) has equilibrium states, i.e. when the condition 

IB(I, )I < mV=lA. (v, Z, )I (2.6) 

is satisfied. In this case the resonance level Z = I,, is said to be partially passable (for details see 
]4,61). 

Equation (2.1) is equivalent to an autonomous system, being a special case of (1.3). Under 
condition (2.4), there may be limit cycles in this system. To determine the latter one must 
construct the PoincarbPontryagin generating function. 

In Fig. l(a) we show the phase picture of Eq. (2.1) under conditions (2.4) and (2.6). There is 
a unique limit cycle. If the cycle lies outside a neighbourhood of the separatrix loop of Eq. 
(2.9, there is a corresponding two-dimensional invariant torus in the original system. Since the 
period of the limit cycle of Eq. (2.1) is of order l/u in t, in this case we have long-time pulsation 
regimes in the original system (1.1) (the generatrices of the torus have different order). 

However, if the limit cycle lies in a neighbourhood of the separatrix loop (whose width in 
terms of Z is known to be of order exp(-l/u)), then the two-dimensional invariant torus in the 
original system (1.1) is destroyed. A bifurcation setting in which the cycle is caught inside the 
separatrix loop is shown in Fig. l(b). The non-autonomous terms, which were discarded when 
deriving (1.2), lead to he homoclinic structure shown in Fig. l(c) for the Poincare map with 
p= 3. Because of the presence of non-compact separatrices, in this case one can talk of an 
irregular transfer process only. 

Fig. 1. 
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Case (b). In this case Eq. (2.1) always possesses eq~iibrium states and we have a third kind of 
resonance zone, namely, a non-passable resonance zone. To better understand the structure of 

such a zone, we introduce in (2.1) the difference in frequency y between the level Z = I, and 
the level Z = I,, in the neighbourhood of which the autonomous system (1.3) has a limit cycle 

Then Eq. (2.1) can be rewritten as the system 

du/~=A.(~;Z~)~~((~(v;Z~)us.y), dv/&=bu (2.8) 

For non-degenerate resonance zones, which are considered here, b tt 0. 
In (2.8) we will change the variables (v, u) to the action .Z and angle L (both in the oscillatory 

and the rotational zones) and average the resulting system over the “fast” angular variable L. 
As a result, we arrive at the equation dlld~ = pbQP(J)I2n, where 

To(v(Z, ~);I,)$(J, L)& in the oscillatory zone 

i2[o(v(J, z,);~~)rr~(J. L)dLk~ in the rotational zone 

Here Q is the characteristic frequency and 0 c .Z <J,, where J, corresponds to the contour in 
the “unperturbed” system 

du/dr=&(v;Z,), e?vi&=bu (2.9) 

formed by the saddle and two separatrix loops enclosing the phase cylinder. 
The function Q(f) is discontinuous at the point .Z = J, when y # 0. We shall therefore use 

Mel’nikov’s formula [8] to determine the relative location of the separatrices, which in system 
(2.9) constitute the contour formed by the outer separatrix loops 

A=uA;+O(u2) 

Here v,, u,, is a solution of (2.9) on the contour consisting of the saddle and the outer 
separatrix loops. Setting 

we find from the formula for A: that Ai = d(a + fk) f 2rcy, where 

From the condition A: = 0 we get 

y=yf= Td(a+@)/27c (2.10) 

In system (2.8) the upper contour exists when y = y’, and the lower contour exists when 
y=y-. Relationship (2.10) defines two straight lines in the (a, y)-plane. They intersect each 
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other at (a*, O), where a* =--cc/@ When IQI> 1 the function o(v; I,,) has a constant sign, and 
when I a I c 1 it has an alternating sign. 

By virtue of (2.4), the second case is of interest since the first one has been considered before 
in [4,5]. The case I a I<: 1 is special in that limit cycles can exist in system (2.8) both in the 
oscillatory and rotational domains, for which there are no generating cycles in system (1.3). 
The following bifurcations giving rise to limit cycles in (2.8) are possible: (a) a structurally 
unstable focus, (b) a separatrix loop (contour), and (c) a condensation of trajectories. 
However, if one is not interested in the number of limit cycles, it suffices to consider the case 
when there is no more than one limit cycle in the oscillatory domain (again, here one can add 
the words “apart from an even number”). Then one can state a general assertion on the 
variation of the qualitative behaviour of the trajectories of (2.8) as the difference in frequency 
tuning is altered, similarly as in [4]. However, prior to this we consider in detail the problem 
for the case when f and g are trigonometric polynomials of degree N in cp. Then, by (1.5) and 
(2.1), A and G are also trigonometric polynomials of degree not exceeding N, G N 

-b,&(v;Z,) = 3(ai cos(ipV)+ bi sin(@)), Oe(V;l,) = it{di COS(@V)+Ci sin(@‘)) (2.111 
i=l 

It follows from (2.1) and (2.2) that, in general, different harmonics in the perturbation 
contribute to A and cr. This means that harmonics with different numbers can predominate in 
(2.11). We leave only these fundamental harmonics in (2.11) To fix our ideas suppose that the 
first harmonic predominates in the expression for A* (v; Zp4) and the n th harmonic 
predo~nates in the expression for o *(v; I,&. Then, by substituting @==+ y, one can 
represent (2.8) in the form of the equation 

(2.12) 

(r=j&+g, y=awgb,~q)) 

After the substitution 

z=pv+y, J&k-c, pi&*& rJm*Y 

L?, = da cos(nyr) - c,, sin(nyr), i;, = d, sin(n\y)+ c, cos(nv) 

we arrive at the equation (the prime denotes a derivative with respect to 2) 

z”+sin(z)=~[(L?.~s(~)+~~sin(llZ)+I)1)Z’”t.Yl 

The term p&z in(z) in this equation is conservative, i.e. it does not contribute to the generat- 
ing fiction Q, J). We shall therefore discard it. Next, setting B, Id,, = a, y/d,, =a y, pdn * p, we u” 
arrive at the equation 

zn +sin(z) = p+[(cos(nz) + a)~‘+ yl (2.13) 

According to [2], the generating function Q(J) for (2.13) has the form 

@(J(p)) = u+“‘(p) = a @(p)+GWfWny 

~)(~)=l~[(p-l)~+~~* Ic;(l)(p)=161(1-pfK+(2p-l)El13 

(2.14) 

#‘(p)=8E/Ji;, F;‘2’(p)=8[2(p-l)~+(2-P)El/3P# 
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Here s = 1 corresponds to the oscillatory domain and s = 2 to the rotational domain, K and E 
are complete elliptic integrals, p =_k’, k is the module of elliptic_ inlegrals, p = (1+ h)l2 in the 
oscillatory domain and p = 2/(1 +h) in the rotational domain, h = h(J(p)) is the value of the 
energy integral of the equation z”+ sin(z) = 0, F,‘“)(p) is the generating function determined by 
the perturbation term z’cos(jz), the plus sign corresponds to he upper half of the cylinder, the 
minus sign to the lower half, and 6, is the Kronecker delta. 

Without assuming that u is small, an equation of the form (2.13) with )2 = 1 was considered in 
[lo] in connection with the analysis of phase-locked automatic frequency control systems. 
Here, unlike [lo], we use relationship (2.14) to study (2.13). This enables us to find all the 
bifurcation sets explicitly, except for one such set, namely, that corresponding to the saddle 
separatrix loop that fails to enclose the phase cylinder. We also remark that the results of [lo] 
enable us to generalize the study of (2.13) to the case of Fq. (2.1) if cr* = dAldv. 

We will first consider the case when y = 0. In this case a)(p) is a continuous function when 
p=l. Then it d e t ermines the limit cycles up to the separatrix. This case was considered in [2]. 
In Fig. 2 we show the structurally stable topological structures for n = 1. Note that limit cycles 
can diverge to “infinity” only when Z3, = 0. This is impossible when condition B is satisfied. In 
Fig. 3(a) we show the bifurcation case when the limit cycle is caught inside the separatrix 
contour (in this case G(p) has the simple root p= 1). Figure 3(b) shows the corresponding 
behaviour of the invariant curves (separatrices) of the Poincare map for the original system 
with p = 3. The neighbourhood with homoclinic contour is attracting. Moreover, a non-trivial 
hyperbolic set exists in the neighbourhood itself [ll] and, consequently, we have a “quasi- 
attractor” (chaotic dynamics-chaos). 

When y # 0 the generating function a(p) is discontinuous at p = 1. Here the bifurcation of 
the cycle caught inside the separatrix must therefore be considered separately. 

Using Mel’nikov’s formula, we compute At, which determines the splitting of the 
unperturbed separatrix for (2.13). One can see that the equation A: =0 is the same as 
@(l) = 0. Then, using (2.14) and assuming n = 1 to be specific, we find the bifurcation values 
y* = +!(a+ 1/3)/x. When y = y’ + O(u) we have a saddle separatrix loop enclosing the phase 
cylinder and lying in the domain z’ z= 0, and when y = y- + O(p) - in the domain z’ < = 0. From 
(2.14) we obtain the following asymptotic forms for p-0: ~@(*)(p)=rc(8a/~p+~p+4y)l2. 

+Q+I/J -I/,tc a<0 a@ 

Fig. 2. 

Fig. 3. 
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It follows that the straight line a = 0 in the plane (a, y) is singular. Furthermore, from (2.14) we 
find the dual cycle line in the parametric form 

a = so(p) =-@‘)‘l(Fn(2’)‘, Y=yo(P)=T(F,‘2)(F,(2))‘-- 

-(Fo’2’)rFd2’)l(2x.‘(Fd2’)‘), o E[O,l] for y =Yi(U) 

It is seen that the modification of the phase portrait of Eq. (2.13) for pz 1 results in the 
formation of a saddle separatrix loop, which fails to enclose the phase cylinder. By condition B, 
a f 0, which implies that the saddle number is non-zero. Then the separatrix loop can give rise 
to only one limit cycle [9]. The corresponding bifurcation set y:(u) in the parameter plane can 
be found numerically. 

Hence we obtain a division of the parameter plane (a, y) into domains with different 
structures, as well as the topological structures for Eq. (2.13) themselves, which are shown in 
Fig. 4 for IZ = 1. The structures corresponding to cases 8-12 are not shown in Fig. 4 because 
they can be obtained from structures 5, 6, 3, 2, and 14, respectively, by changing the directions 
of the coordinate axes. 

Note that along with a separatrix loop enclosing the phase cylinder, Eq. (2.13) has a stable 
limit cycle that does or does not enclose the phase cylinder or, finally, a stable equilibrium state 
or stable “infinity”. This means that no quasi-attractor can exist when y f 0 in the original non - 
autonomous system. We remark that the homoclinic structure exists for a small range of 
variation of y(Iy-y* I-exp(-l/u)). 

We use (1.4) as an example in which a quasi-attractor exists when y = 0. 

Fig. 4. 
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To those limit cycles of Eq. (2.13) that do not lie in the neighbourhood of the unperturbed 
separatrk contour there correspond two-dimensional invariant tori in the original system, as in 
the case B#O. However, here, unlike the case B# 0, two kinds of torus may exist 
corresponding to the limit cycles in the oscillatory and rotational domains in (2.13). The tori 
corresponding to the cycles of Eq. (2.13) in the rotational domain (except for one of them) 
have no generating “Kolmogorov” torus in the corresponding perturbed Hamiltonian system 
(for system (1.4), 4 = P2 = P3 = 0), while the asymptotically stable tori corresponding to the 
limit cycles of (2.13) in the oscillatory domain are images of the tori in the next step of the 
resonance hierarchy. 

Remark. The cases when n is odd and even should be distinguished. When II is even, 
an unstable cycle is caught inside the separatrix loop. For odd n the cycle is stable. Only the 
case of odd n is therefore interesting when analysing the problem of the existence of a 
quasi-attractor. 

According to the bifurcation diagram (Fig. 4), it is convenient to split the case I a Ic 1 into 
three subcases: (a) -1 c a < a*, S), (b) a* < a<O, and (c) O<a< 1, a+ = l/(1-4~~). On carrying 
over the results obtained for Eq. (2.13) to Eq. (2.12) with odd IZ, using [2] in the oscillatory 
domain, and considering the behaviour of solutions on the original cylinder {v(mod21c), u), we 
arrive at the following theorem. 

Theorem 2. There are CL*, y*(a), y:(a), y:(a), a* such that if 1~ I< )1* and n is odd, one 
can distinguish the following three intervals of a as in (2.12): (1) a E (-1, a*), (2) a E (a*, 0) and 
(3) aE (0, 1). 

1. Let aE(-1, a+). Then: (1) when y>y; >O, Eq. (2.12) has a unique stable limit cycle (LC) 
enclosing the phase cylinder (vmod2n, U] and no more than p(n- 1) LCs in the oscillatory 
domain (OD); (2) when yf < y < y+, there are p additional LCs in the OD, which are generated 
by the separatrix loops for y= y; (3) when y= y’, a stable LC in the rotational domain is 
caught inside the separatrix contour r,’ consisting of p saddles and outer separatrices leading 
from one saddle to another, while the remaining unstable separatrices tend to an LC in the 
OD; (4) when y- < y < y+, no LCs enclosing the phase cylinder exist and there are no more 
than pn LCs in the OD; (5) when y=y-, a stationary contour r; is formed consisting of p 
saddles and outer separatrices, which differs from F’,’ by the direction in which the phase 
cylinder is circumvented and the location on that cylinder; (6) when +y; < y < y-, no more than 
p.n LCs exist in the OD and one stable LC enclosing the phase cylinder; (7) when y c y;, Eq. 
(2.12) has a unique stable LC which encloses the phase cylinder (vmod211, U) and lies in the 
domain IL < 0, and no more than p(n - 1) LCs in the OD. 

2. Let aE(a*, 0). Then in the OD there are p(n-1) LCs, and in the rotational domain: (1) 
when y > y-, Eq. (2.12) has a unique stable LC for II > 0; (2) when y = y-, a contour r; is 
formed; (3) when y+ < y < y-, one stable LC exists on the upper half-cylinder (U > 0) and one 
stable LC on the lower half-cylinder (U s 0); (4) when y = y+, a contour r,’ is formed; (5) when 
y < y’, a unique stable LC exists for u < 0. 

3. Let aE(0, 1). Then there are no more than p(n- 1) LCs in the OD, and in the rotational 
domain: (1) when y >y- and IL < 0, Eq. (2.12) has a unique stable LC; (2) when y =y-, a 
contour r, is formed; (3) when y; < y < y- and II < 0, there is a stable LC generated by r, and 
an unstable LC; (4) when y=y;, the stable and unstable LCs are merged together; (5) when 
yO+ c y < y;, no LCs exist; (6) when y= y,’ a semi-stable LC is formed for u ~0 (7) when 
y+ < y c yO+, a stable and an unstable LC exist for 1~~0; (8) when y= y+, the contour r,’ is 
formed; (9) when y < y+, a unique unstable LC exists for u > 0. 

3. A COMPUTER ANALYSIS OF SYSTEM (1.4) 

The present study of (1.4) supplements the earlier results [.5]. We shall therefore only consider the 
effects due to the non-linear parametric term xysin(vt). As in [S], we set v=4. Then for small q, i= l-4 
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system (1.4) can have only two “splittable” resonance levels: H(x, y)=Iz,, and H (x, y)=k,,. where 

&I <h,. The corresponding autonomous system (1.3) has not more than one LC. the passage of which 
through the resonances when PZ varies was considered in [S]. If the LC lies outside the neighbourhoods 
of the resonance levels H(x, y) = It,, and H(x, y) = II,,. then there is a corresponding two-dimensional 
invariant torus T2 in the original tto~~-autonom~~us system (1.4) for which a gen~l-~ltill~ *-Koimog,uro\” 
torus exists in the Hamiltonian system (P, = P2 = P, = 0). 

A program we developed was used in the computer analysis of (1.4). The results in Figs 5-H wcr~ 

obtained using it. The numerical integration in this program involves Runge-Kuttn type lormulae. having. 

an error of the order of O(P) at each integration step It. 

Fig. 5. 

Fig. 7 Fig. 8 
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The numerical analysis of (1.4) was carried out for various values of P, (from 0.1 to 20) and for fairly 
small values of PI, P,, P3. We fixed P2 =-0.008 and varied Pz and P3 to study the fundamental 
resonance. It was established that the theoretical and numerical results are in good agreement as P, varies 
at least up to P, = 2. It is obvious that (1.4) cannot be considered as being close to an integrable system 
for P, = 2. From now on we assume everywhere that P, = 2 unless otherwise stipulated. 

In Fig. S we present the PoincarC map for PI = 0.0472, Pz = -0.008, and P3 = 0.018, which determines the 
structure of the fundamental resonance zone (p = 1, q = 1). Along with the separatrices of the fixed saddle 
point S, a closed invariant curve enclosing the unstable fixed point O- is shown, which corresponds to a 

stable LC in the oscillatory domain of (2.8). This closed invariant curve appears for P3 = 0.014 as a result 

of the loss of stability of the fixed point O^. As P3 increases, the size of the closed invariant curve 

increases and for P3 = 0.0487 the curve is caught inside the separatrix of the saddle point S, forming a 

contour (Fig. 6). As P3 increases further two closed invariant curves appear, shown in Fig. 7 for P3 = 0.15. 

These changes in the structure of the resonance zone are in good agreement with the theoretical results 
for y = 0. Good agreement with the theory can also be seen for y # 0. 

In the case presented in Fig. 6 the transversality of the intersection of the separatrices of S cannot be 
detected visually. We therefore increased P, to obtain a better picture of the homoclinic structure. When 
P, = 8, the structure can be seen clearly (Fig. 8). The corresponding quasi-attractor is the only attracting 

set. Stable periodic points with long periods can exist inside the quasi-attractor itself. They are extremely 
difficult to detect numerically. 

This research was financially supported by the “Universities of Russia” (Fundamental 
Problems of Mathematics and Mechanics) Programme. 
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